_NiALL.
h =

K]

Integrating with the INTA
E-Invoicing System

A Step-by-Step Developer's Guide to Connecting, Authenticating,
and Submitting Electronic Invoices in Compliance with Iranian Tax Law.

&1 NotebookLM

The Developer’s Journey to Compliance

This guide breaks down the INTA integration into four distinct, sequential
parts, taking you from initial setup to a successfully verified submission.

11
1. The Foundation: 2. The Gateway: 3. The Core Task: 4. The Confirmation:
Setup & Core Authentication Creating & Verification &

Concepts Submitting Invoices Management

&1 NotebookLM

Understanding the Core Concepts & Terminology

[
a5

T =%

1234-4566-8990

Digital Signhature (Jlusws (glaxl)

A process that uses a private key to sign a
message, allowing the recipient to verify the
sender's identity and message integrity using
the corresponding public key.

Tax Memory ID
(BPWb aBdl> USH dwlian)

A unique identifier assigned by the INTA
through the taxpayer portal (Karpoosheh). This
ID is required for issuing all electronic invoices.

JSON Web Signature (JWS)

The standard used to sign data (like
authentication requests and invoices) to
ensure data integrity.

Digital Signature Certificate

(Lasl (21g5)

An electronic certificate issued by a trusted
authority, containing the public key, expiration

date, and identity information of the owner (in
.crt or .cer format).

JSON Web Token (JWT)

A standard for creating access tokens. In this
system, JWTs are used to create a signed
token (JWS) for authentication.

JSON Web Encryption (JWE)

The standard used to encrypt the signed
invoice data to ensure confidentiality.

& NotebooklLM

Prerequisites & Initial Setup Checklist

Obtain a Digital Signature Certificate: Acquire a valid electronic signature certificate for the legal
entity from a trusted Iranian Certificate Authority.

Register on the Taxpayer Portal (Karpoosheh): The taxpayer must register and become a member of
the official INTA portal.

Create a Tax Memory Profile: Within Karpoosheh, create a profile for the ‘Tax Memory' from which
iInvoices will be issued.

Upload Your Public Key: Upload your 2048-bit public key or signature certificate (".crt’) to the Tax
Memory profile in Karpoosheh.

Receive Your Unique Tax Memory ID (' il dhasl> glish awliiis™): Once the profile is set up, the INTA
assigns the unique Tax Memory ID. This ID is your primary "cliientld” for all APl interactions.

O-hb-W-N-=

**Note”: Per document RC_TICS.IS_v1.6, the taxpayer must select their information submission method (e.g., '‘By

taxpayer') and upload their public key certificate to Karpoosheh to receive their Tax Memory ID.
& NotebookLM

The Authentication Flow: Generating Your Access Token

Every APl request (except the first) must be authenticated with a single-use JWS token. This token is generated
through a five-step challenge-response process.

1 GET Nonce

Request a unique, temporary challenge string 2
from the server.

2 Build Payload
Create a JSON object containing the "nonce’ and E
your “clientld’ (Tax Memory ID).

\)

33

3 Build Header T
Create a JSON header containing the signing -ra—
algorithm (RS258), your public key certificate (x5¢), | .. [9]
and the signature timestamp (sigT). B

)

4 Sign Packet -
Use your private key to sign the Base64Url-encoded | =7

Header and Payload, creating the final JWS token. | %~

\)

5 Use Token =

Place the JWS token in the “Authorization: Bearer | Ewarer (lokien]
[token] header of your next APl request.

&1 NotebookLM

Step 1: The Handshake - Getting a Nonce

A "Nonce is a random, single-use challenge string with a limited time-to-live. It prevents
replay attacks and ensures each request is unique.

APl Request Example APl Response Example
e Method: "GET" e Content-Type: "application/json’
e Endpoint: https://tp.tax.gov.ir/requests
manager/api/v2/nonce’ {
e Parameter: timeTolLive (Optional, integer "nonce" : "ab2082a55-e106-445c-b2a3-
between 10-200 seconds, default 30) 5a7364991a66" ,
\ "expDate": "2023-08-
curis=x .« GET: 22T16:07:18.2778242087"
‘https://tp.tax.gov.ir/requestsmanager/ }
api/v2/nonce?timeTolLive=20"

-H 'accept: */*'

&1 NotebookLM

Steps 2 & 3: Constructing the JWS Header and Payload

JWS Protected Header

d

"sigT": "2023-05-13T10:44:472Z2", }

{
salg" = HRS256",
B = o[MIIDese" 1.,
Seritae [FSagTel

}

— Algorithm. Must be "RS256°.

Certificate. An array containing the
Base64-encoded X.509 certificate.

Signature Timestamp. The UTC time of signing
in "yyyy-MM-dd'T'HH:mm:ss'Z" format.

Critical. Indicates that "sigT is a critical
header parameter that must be understood
by the server.

JWS Payload

snonee' ' anPi2as5—.. ',
acisLe et SR AT]. 226

—— Nonce. The exact string

received from the * /nonce’

endpoint.

Client ID. Your unique Tax
Memory ID.

& NotebookLM

Step 4: Signing and Generating the Final JWS Token

The Header and Payload are each Base64Url-encoded, joined by a period, and then signed with your
private key using the RSASSA-PKCS1-v1l 5 using SHA-256 algorithm to create the final JWS token.

BASE64URL (Header) + . + BASE64URL (Payload) + . + BASE64URL(Signature)

Java Code Snippet

// Loading Private Key and Certificate
PrivateKey privateKey = ...;
X509Certificate certificate = ...;

// Generate Signature Time
String signatureTime = LocalDateTime.now(ZoneOffset.UTC)
.format(DateTimeFormatter.ofPattern("yyyy-MM-dd'T'HH:mm:ss'Z2'"));

// Set Payload
String payload = "{\"nonce\":\"...\","clientId\":\"A11226\"}";

// Generate JWS

JsonWebSignature jws = new JsonWebSignature();
jws.setPayload(payload);
iws.setAlgorithmHeaderValue(AlgorithmIdentifiers.RSA_USING_SHA256) ;
jws.setKey(privateKey);
jws.setCertificateChainHeaderValue(certificate);
jws.setHeader("sigT", signatureTime);

jws.setHeader("crit", new String[]{"sigT"});

// Sign and serialize
String jwt = jws.getCompactSerialization();

.NET Code Snippet

// Loading Private Key and Certificate

var privatekKey = ...; // from PemReader
var certificate = ...; // from PemReader
var publicKey = ...; // from certificate

var payload = "{\"nonce\":\"...\","clientId\":\\"A11226\"}";

// Generate JWS
var jws = JwtBuilder.Create()
MithAlgorithm{new RS256Algorithm(publicKey, privateKey))
.AddHeader (HeaderName.X5c, new([]
{Convert.ToBaseb4String(certificate.GetRawCertData()}})
.AddHeader("sigT", DateTime.UtcNow.ToString("yyyy-MM-
dd'T'HH:mm:ss'E'”}?
.AddHeader("crit", new[] {"sigT"})

o

.Encode(JsonSerializer.Deserialize<JsonNode>(payload));

[**Key Dependencies**: ‘josed| (Java), jose-jwt’, 'JWT', 'Portable.BouncyCastle’ (.NET) ‘

& NotebooklLM

The Core Task: Invoice Submission Workflow

Once authenticated, submitting an invoice is a four-step process of structuring the
data, signing it for integrity, encrypting it for confidentiality, and sending it to the INTA.

> [{1}
()
1. Structure 2. Sign the
Invoice Data Invoice (JWS)
Create the complete The entire invoice JSON
Invoice as a JSON object becomes the payload of a
according to the INTA JWS packet, signed with
specification. your private key.

3. Encrypt the
Packet (JWE)

The signed JWS packet
Is encrypted using a
symmetric key, which Is
itself encrypted with the
INTA's public key.

>

Y

4. POST to API

Send the final, encrypted
JWE packet to the
"/invoice’ endpoint.

&1 NotebookLM

g INTA
Step 1: Structuring the Invoice Data

The invoice is a detailed JSON object. While the full specification contains over 80 fields, they can be
understood through three main logical sections. Always use the official Unit of Measurement codes.

£

"header": {
a5l AT 2 LG, // Unique Tax ID for the invoice
"indatim": 1683997837988, // Invoice creation timestamp (Unix ms) : :
T InE ;ﬁdﬂﬁgﬁg%ﬁ;t - // Seller's National ID / Economic Code P eTRrar calricy ity
; oy UL GRS S R *‘RC_UMGS.ST_V1.18" for the
,.'udy... [complete list of official Unit
§ : of Measurement (mu) codes.
"sstid": "2710000138624", // Goods/Service ID —
"gstt": " aileww oilahd caio Wlgs", // Goods/Service Description MU Code Description
:mu:: ;164", ;’i gnitt{:,ui Measurement Code (e.g., 164 = Kilogram)e 164 Kilogram {Pﬁslds}
= P uantity ,
"fee": 10060, // Unit Price 166 Meter (,o)
// ... other line item fields 179 Piece (suc)
] } 180 Liter (i)
"payments": [= o
// ... payment details if applicable ~ J
1
}

= i &1 NotebookLM

Steps 2 & 3: Signing for Integrity (JWS) and
Encrypting for Confidentiality (JWE)

Part 1: Signing for Integrity (JWS) Part 2: Encrypting for Confidentiality (JWE)

INTA PUBLIC

— @)

IS N
@ L % i W @:
s

1. Fetch the INTA's public encryption key and its ID (“kid") from the

The entire invoice JSON from the previous step is used “GET /server-information® endpoint.
as the payload for a JWS packet. This process is identical 2. Generate a random, local symmetric key (AES-256-GCM).
idgntca! to the authentication token signing, using your 3. Encrypt the entire .;'WS packet using this symmetric key.
privatekey. 4. Encrypt the symmetric key itself using the INTA's public key
A\ Purpose: Guarantees to the INTA that the invoice data (RSA-OAEP-256).
has not been altered since it was created by the 5. Assemble the final JWE packet containing the encrypted key,
authenticated sender. initialization vector (IV), encrypted data (ciphertext), and the

INTA's key ID ("kid").

A\ Purpose: Ensures that the invoice content is confidential and
can only be decrypted by the INTA server.

& NotebooklLM

EZINTA

Step 4: Sending the Invoice and Capturing the Response

The final encrypted JWE string is sent as the ‘payload’ in a 'POST request. The response will
contain unique identifiers for tracking.

APl Request Example API| Response Example (on success)
Method: 'POST' f :]
Endpoint: https://tp.tax.gov.irfrequestsmanager/api/v2/invoice’ "timestamp": 1684054900556,
Headers: ‘Authorization: Bearer [JWS_Auth_Token], eS|
‘Content-Type: application/json’ {
) S "uid": "cf819c26-f235-11ed-a05b-0242ac120003",
["packetType": null,
{ "referenceNumber": "3645b684-2cle-460c-8584-1739cB89d99fb",
“payload": "eyJhbGci0iJSUBEtTOFFUCBYNTYi. .. [JWE]...", ‘data”: null
"header": { }
"requestTraceld": "cf019c26-f235-11ed-al5b-0242ac126003",]
Bfiscalbidi: "AYVI216" }
} . .
}
]
“*Important®™*: Immediately store the "uid™ and "referenceNumber'. You will need them to query the invoice status.]

Y,

& NotebookLM

INTA

The Confirmation: How to Verify Invoice Status

After submission, an invoice enters a processing queue. You must query the API to confirm
its final status (Success or Failure). The system provides three methods for inquiry.

Endpoint Key Parameter(s)

Typical Use Case

GET /inquiry-by-reference-id | referencelds

GET /inquiry-by-uid uidList, fiscalld

start, end, pageNumber,

GET /inquiry ~ pageSize

The most common method. Check the status of
one or more specific invoices immediately after
submission using the returned "referenceNumber".

Useful for checking the status using your own

. internal request ID (" requestTraceld becomes

. "uid’) that you generated before sending.

. Best for batch reconciliation, retrieving all

submissions within a specific date range to
check for any missed or failed invoices.

& NotebooklLM

INTA

Decoding the Status Response: Success vs. Failure

FAILED Response Example

~

{
"referenceNumber": "93367b02...",
"uid": "2b982bfd-...",
"status': "FAILED",
"data": {
"error: [
{
"EﬂdE" : “312332“ :
"message": "The value entered in the 'Settlement
Method' field is not among the allowed values.",
"errorType": "ERROR"

LY

detailing what went wrong.

SUCCESS Response Example

~

{
"referenceNumber'": "f9173085...",
oo U P T X iy LT
Mstatus": "SUCCESS",
"data": {
"error”: [1,
"warning": [],
"success": true
-
=T1sCabld S ATTI0R: ,
"sign": "eyJhbGci0iJSU... [IWS]"
}

}
f5c07 |
}: '
"fiscalld": "A1110K", | !—— The ‘data” object contains an
SSagnE s = ~ ‘error’ array with specific codes
} and human-readable messages

LY

Y The “sign” field contains a JWS packet signed

—J by the INTA. You can verify this signature with
the INTA's public key to confirm the
authenticity of the success status.

& NotebookLM

INTA

Further Management & Official Resources

Utility Endpoints Official Resources
Beyond invoice submission and status checks, the API provides For a complete and exhaustive list of all fields, validation
endpoints for managing taxpayer and fiscal device information. rules, and error codes, always refer to the latest official INTA

documentation:

. GET /taxpayer?economicCode={code} ') : :
| 0 _ _ || Technical Connection Guide
Retrieves public information about a taxpayer profile, —

including their " taxpayerStatus’ (e.g., "ACTIVE'). RC_TICS.IS_v1.6

GET /fiscal-information?memoryId={id}

Electronic Invoice Issuance Guide
RC_IITP.IS V7.6

Retrieves details about a specific Tax Memory device,
iIncluding its " fiscalStatus’.

POST /involce/payment

Goods/Service Unit of Measurement Codes
RC_UMGS.ST_V1.18

vl

Allows for sending payment data related to invoices
with settlement methods of credit or installments. -

LT

& NotebooklLM

